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Note 

More Efficient Numerical Solution 

of Diurnal Kinetics Problems 

Variable-step, variable-order algorithms are the most powcrfuul general methods presently 
available for the: so!ution of systems of ordinary dilTcrenti~1 equations. Only few of thesc 
have achieved some success in obtaining highly accurate solulions of stiff diurnal kinetics 
problems with rapidly varying (periodic) reaction rates that occur in the field of stratospheric 
chemistry. A nlcthod is proposed here to be used iu coujtuxlion with thcsc al~orithnn to 
prowdc greater computational cniciency in solving prob!ems of this type. 

Theoretical investigations of the chemical composition of the stratosphcrc ofLcn 
lead to kinetics problems that are not amenable to numerical solution even by thz 
most advanced techniques. Diurnally varying photodissociation rate coeRicients 
exhibit rapid changes in short time intervals near the beginning and end of daylight 
hour5 causing chemical concentrations to behave nearly like btep functions. Moreover, 
the tlifTerentia1 equations governin g these concentrations may bc charactcrizcd by the 
quality of stiKness which refers to the presence of very small tiine constants whose 
occurrence allows the use of only special classes of solution techniques. The intract- 
able nature of the equations has hindered the development of dynamic-kinetic models 
of the stratosphere [I]. In an effort to avoid the numerical difficulties, some modelers 
have assumed kcry short-lived species to be in photochcmical equilibrium. Others 
have rcsortcd to the use of constant (mean-value) photodissociation coefticients to 
provide more easily caiculablc approximate solutions. Gclinas 121, Whitten a:nd 
Turco [3], and Martin [4], however, have shown that such methods can lead to 
significant error in some casts. 

Numerical problems of the type dcscribcd have led to the development of algorithms 
dcsigncd with the aim of achieving reasonable c!ficiency in calculating highly accurate 
solutions that rcproducc realistic diurnal variation of spccics concentrations. The 
only schemes that have achieved some degree of success appear to be those which 
automatically vary both the step siye and the or&r of the finite-dilTerence approxima- 
tion in such a way as to maximiTe the step size under the constraint that local trunca- 
tion error remain Lvvithin a user-specified tolerance. One such scheme has been used 
by Wuebbles and Chang [S] to show the great importance of using diurnally varying 
parameiers in calculating trace constituent distribulions over multiyear periods. For 
some stiir diurnal chemistry problems, step-size selection algorithms arrive at time 
incrcmcnts that vary over many orders of magnitude in the course of a one-day 
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simulation. For other problems, no allowable step size can be found in the course of 
the solution procedure, and the integration fails [I]. 

For hard-to-solve diurnal chemistry problems, it would seem advantageous to 
“help” the step-size selection algorithms by transformation of the independent 
variable t (time) to a new variable t’ for which the optimum step size is nearly constant. 
This approach has been used successfully in satellite-motion calculations where a 
change in the independent variable which eliminates most of the step-size variation 
results in a much more efficient numerical solution process [6]. Diurnal chemistry 
problems, which also lead to approximately periodic variation in the step size, are 
well suited to this technique. Integration over one representative cycle (day) without 
change in variable serves to reveal the behavior of the step size for the algorithm under 
consideration. From this information, a suitable transformation can be found to 
limit the variation in step size over all succeeding cycles. 

2. APPROACH 

We are concerned with the solution of systems of nonlinear kinetic equations of the 
form 

2 =fi(c, ,...) CI , t), i=l 1, ,*-a, 

with specified initial values, where ci denotes chemical species concentration andfi is 
a function that accounts for all chemical and radiative production and loss terms to be 
considered. For some diurnal problems occurring in stratospheric chemistry, ci may 
be small during the nighttime hours, suddenly increase orders of magnitude at the 
coming of daylight, vary slowly during the day achieving a maximum at noon, and 
then sharply drop orders of magnitude near sunset. Accurate integration requires 
the use of very small time increments near sunup and sundown when species concen- 
trations are varying rapidly. Automatic step changing algorithms will attempt to 
accommodate this need and to allow, for the sake of computational efficiency, 
considerable expansion of the time increment to a maximum value occurring around 
noontime. Accordingly, the step size will undergo frequent updates which can consume 
significant computer time and which occasionally will result in the failure of the 
algorithm to determine an allowable sequence of step sizes. 

We seek to determine a new independent variable t’ that will provide greater effi- 
ciency and perhaps greater chance of success in carrying out the numerical integration 
of (1). The variable t’ is defined through the relation 

so that (1) becomes 

$t = $M~‘)lhkI ,.-., CI , WI, i = I,..., I. (3) 



DIURNAL KINETICS PROBLEMS (13 

To find a suitable function c#, the following approach can be taken. First, the inte- 
gration is carried out over one diurnal cycle (unless the integration is aborted) with 
time as the independent variable using a variable-step, variable-order algorithm. An 
approximate analytic representation oft as a function of the time step 12 is determined. 
The variable I’ then is selected so that t’[f(n)] is approximately linear in n; i.e., so that 
the step size in f’ is nearly constant. Having used this representative diurnal cycle to 
determine the appropriate transformation, the new independent variable is used on 
succeeding integration cycles. 

Our main concern is with the daylight hours (which we take to be 2177 I: t/T r-1 
3117 I, m .: 0: 1, 2 . . . . . where T = 43,200 set) since these are the hours during which 
the numerical difhculties occur. Relatively uniform, large time steps carry the inte- 
gration efiiciently through the nighttime hours. The differential-equation soiver used 
in our experiments is that developed by Byrne and Hindmarsh [7], whose algorithm 
bears some similarities to the methods of Brayton et al. [8] and Gear 191. The Ryrne-- 

Hindmarsh algorithm, encoded in a widely used program called EPISODE (EUective 
Package for Integration of Systems of Ordinary DiKercntial Equations), is stable 
under somewhat less restrictive conditions than are some of the earlier methods. The 
EPISODE program was selected for this work since it is well tested, well documented, 
and seems to have been designed with diurnal photochemical problems in mind. (The 
EPISODE program and user manual are available from the National Energy Sof&ware 
Cenier.) 

Numerical solutions of two prototype diurnal kinetics problems have been com- 
puted for five diurnal cycles. In each case, it has been found that for the daylight 
hours, the EPISODE step-size selection algorithm leads to a function t(n) that can be 
well approximated by an S-shaped curve centered about I?,,, , the time step correspond- 
ing to the noontime value of f. For the initial daytime period 0 < r,‘7’ < 1. f-0, 
example, vve can take as an approximating function 

which for .L >> 1 and 13 % 2 will be of the required form. IHere 17,,,, is the last time step 
used before t reaches the value 43,200 sec. If WC define the new independent variable as 

t’ = arctanh{p[(t/I’) - 0.511, 

it follows from (4) that t’ is a linear function of n. The form of +, which in this cast is 

+[t(f’)] = T(1 - tanh*t’)!,& (S! 

has computational significance since the solution of (3) requires evaluation of this 
factor at each step. This added computation is a drawback of the approach but never- 
theless can be countered by substantial reduction in the number of steps that rest&s 
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when the integration is performed on (3) rather than (1). On more complex problems, 
suitable transformation could involve functions more expensive to evaluate. However, 
as the number of equations is increased, calculation of C$ becomes a smaller portion of 
the total computation, C$ being a common factor in each equation. 

The shape of the approximating function is adjusted by selection of the parameters 
01 and p which can be determined through simultaneous solution of equations for 
f and dtjdn at any point on the curve t(n). The parameter /3 alone then can be used 
to relate t and t’. If we arbitrarily perform the curve fit at n = I, thereby opting for a 
close approximation in the tail of the curve, an appropriate initial time increment T 
must be determined. We choose r to be the largest step size allowed by the algorithm; 
i.e., the largest step capable of providing the specified accuracy. Then, 

T = t(1) = T(0.5 -.- /3-I tanh CY) (7) 

and 

7 = ;; (1) = 7-ap--ynm - 1)-l sech” CY. (8) 

Equation (7) yields the relation 

P= 
tanh N 

0.5 - r/T 

while elimination of p from (8) gives 

sinh 2~ (OX/%) - 1 
2x 

--. 
&a - 1 

(9) 

(10) 

An iterative procedure can be used to solve (10) for 0~; this value is then substituted 
in (9) for the direct calculation of /I. In practice, p can take on a value slightly less 
than 2, and it is convenient to write 

/3=2-a. (11) 

In the numerical experiments carried out so far, optimum values of 6 have been found 
to range from 0.4 x 1O-3 to 0.5. 

The original variable t serves well to eficiently carry the integration through the 
night. To maintain this property but avoid restarting the integration procedure at 
sunset, the function t’(t) can be extended by defining 

t’ = P f Q(t/T), 1 < t/T < 2, (W 
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for the nighttime hours. The constants P and Q are chosen to satisfy the relations 

(i3f 

and 

P ... arctanh@/2) - Q, 114) 

in order to provide continuity oft’ and dt’jdt at t/T -.- 1. These conditions imply the 
continuity of c; and dci/dt’, the leading elements of the history array used in EPISODE; 
the higher-order derivatives of Ci fail to be continuous by terms of order 6. A restart 
is suggested, however, at sunup of each new day [I]. Definitions (5) and (12) can be 
suitably extended for succeeding days. 

Before proceeding further, a fundamental difficulty of the transformation approach 
should bc pointed out. For an approximating function such as t(n) in (4), f’(t) is 
defined so that the ditlcrential dt’ (- dt/+) -:-: const x dn in the hope that an anaiogous 
finite-difference relation will result; i.e., so that the constant (integral) increment in n 
will produce a constant increment in the new variable t’. Thus if h and it’ are the step 
sizes in t and t’, respectively, we would expect that h’ GZ h/$ = const based on con- 
sideration of the differential formula alone. Due to the error control mechanism in 
EPISODE, however, a more complicated relationship exists between h’ and h even 
for the case in which the order of accuracy is held fixed. The step size h’ may or may not 
be close to I$+ in value depending on the particular functional forms of $ and I’ 

3. NULII~ICAL ExI~ERIMEN~~S 

To evaluate the en‘ectiveness of the approach described, two diurnal chcmicai 
kinetics test problems were considered. Numerical solutions were carried out on the 
CDC-7600 using single precision. The first problem 173 is a mockup of a photo- 
chemical reaction which takes the form 

and 

where 

49 = fwo, 

/f(t) = [D -f. AL(t)]/& 

A = IO-‘*, B --= 1 OS, n -: IO-‘“, 

eXp(-pJ!Sin Cd), E(f) = lo, sin wf > 0 
sin t~Jf cc 0. 
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and the constants A, B, and D are in appropriate units. The solution to (15) and (16) 
is c(t) = H(t), nearly a square wave. The eigenvalue (-B) gives rise to a small time 
constant of 1O-8 set, and the problem must be solved by methods designed for stiff 
systems. By use of the appropriate algorithm contained in EPISODE, (IS) with (16) 
was first integrated over the interval 0 < t/T < 1 for a prescribed local error tolerance. 
Semirelative error control was used in this run whereby the error at time t(n) was 
controlled relative to rnaxgG+ I c[t(i)]l. The only modification made to the EPISODE 
package was the incorporation of a print statement to provide output at every step 
of the integration process in order to follow the variation of the step size. The behavior 
of t/Tas a function of the time step n is shown by the solid line in Fig. 1. The quantity 
T/T, the largest acceptable initial step size, was determined to be 0.5 x 10-5. With 
n, : 276, relations (9) through (11) yield the parametric values 

a = 4.3797, /3 = 1.99939, 6 = 0.00061. (17) 

The resulting approximating function t(n) given by (4) is indicated by the dashed line 
in Fig. 1. 

In spite of the expectation of nearly uniform step size in t’, all runs in the trans- 
formed variable were carried out using the full EPISODE algorithm for error control 
and step-size selection. Any gain in efhciency is thus due to reduction in the number of 
steps required and not a result of deleting the error control mechanisms. The step- 
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FIG. I. Normalized time t/T versus the time step II over one-half diurnal cycle 0 Q f:T < I 
(daylight) determined by application of the automatic step-changing algorithm (solid line) and by 
evaluation of an approximating function (dashed lint) for the mockup photochemical reaction (15). 
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changing process remains crucial, for despite our efforts, t’ (as determined by 
EPISODE) falls far short of being a linear function of n. 

Numerical integration of the transformed system determined by (17) produces the 
variation of t’ with (normalized) time step indicated in Fig. 2 (solid line); the dashed 
line indicates the theoretical (linear) variation oft’ with time step. For the initial step 
size, an arbitrarily chosen small value was selected to allow EPISODE to automatically 
increase the step size to an appropriate value within a few steps. The transformation 
reduces the number of steps required from 538 to 415 with a 17 “/;: saving in running 
time (II,,, is reduced from 276 to 269). 

I-- 
n--- ;i 

L II, I I !  I !  
0 1.0 2. 

Fraction of ‘Icor Tirre Stec ry (3! 

FIG. 2. Transformed variable t’ versus the time step (as a multiple of n, , the step number at 
noon) dctcrmincd by the automatic step-changing algorithm (solid line) and the theoretical linca: 
variation of t’ (dashed line) with time step for the mockup photochemical reaction (15). 

Some further numerical experimentation, however, shows the optimum of 6 to be 
somewhat smaller than the derived value. Table 1 contains the relevant data for com- 
paring the numerical integration of the untransformed equation (15) (base run) with 
the numerical integration of the transformed equation using the independent variable 
r’ defined in (5) for several values of 6 (or alternatively, /I). This table includes the 
computer processing (CP) seconds required for executing each run on the CDC-760@, 
the number of steps required, the number of function evaluations (NFE) of the right- 
hand side of (15), and the number of Jacobian evaluations (NJE). The results indicate 
an optimum value of 6 = 0.4 x lo--” in which case the integration required about 
27 “/:, less processing time than that required for the base run. With the corresponding 
value of OX ( 4.58) determined from (7), the approximating function for optimal 6 
ditl’ers little in graphical form from that shown by the dashed line in Fig. 1. While 
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TABLE I 

Computer Processing Statistics for Comparing Direct Integration of (15) with Integration of 
Transformed Equation for 0 Q r/r < 1, Using Several Values of 6 

6 x 10s 
--.-. 

CPS 

Steps 
NFE 
NJE 

0.300 

Integration 
aborted 

0.350 0.375 0.400 0.425 0.450 

0.258 0.276 0.219 0.258 0.234 

432 466 365 426 394 
901 930 751 845 826 
133 172 113 159 104 

BZ3SC 

0.500 run 
-.- 

Integration 0.298 
aborted 

538 
1085 
114 

some values of 6 led to aborted integrations, all full-term integrations using t’ as the 
independent variable ran faster than did the base run. 

A five-day integration was carried out using the original equation and the trans- 
formed equation with the optimum 6. The run data are presented in Table II. While 
the percent saving achieved for the first 24 hr period is not maintained over the full 
five-day period, an overall 17.5 z reduction in the number of steps is realized along 
with a 16.9 ‘x reduction in processing time. By adjustment of the arbitrarily chosen 
initial step size, further runs produced yet greater reduction in steps with up to 20.8 “/, 
reduction in run time (Cl’s 1.288). 

TABLE 11 

Computer Processing Statistics for Comparing Direct Integration of (IS) With Integration of 
Transformed Equation Over a Five-Day Period 

Day 

1 
2 
3 
4 
5 

Total 

CPS 

6 = 0.4 x 10-a 
--...-~-_ -. __ 

NSTEPS SFE NJE 
~... 

432 843 171 
526 1031 206 
511 949 241 
497 982 206 
517 1012 203 

2483 4817 1027 

1.352 

Base run 

NSTEPS NFE NJE 

591 1154 160 
595 1146 143 
633 1200 211 
607 1167 153 
582 1136 173 

3008 5803 840 

1.627 

While the actual variation of t’ with n can in no way be considered linear in the 
above experiment, the transformation does supply considerable uniformity by cutting 
the range of step size from six (decimal) orders of magnitude in the t formulation to but 
three or four orders of magnitude in the t’ formulation. 
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From Fig. 1 it is seen that the fitted curve is in poor agreement with the actual data 
in the region near IZ = n, (noontime) where the curve rises sharply, suggesting that 
CL should take on a larger value to increase the slope of the approximating function. 
Accordingly, the parameters were rederived by fitting the function (4) at n =. 1 and 
n :. 5 where t(fi)/r :- 0.25, A (- 267) lying close to n, . This fit gives much better 
agreement near noontime, but results in a small negative value of 6 for which t’(0) 
is not defined. Nevertheless, starting at t = ‘T, integration of the transformed system 
was carried out using the recomputed value of 6 with the result that little efficiency 
was gained (total CPs = 0.281 for the initial 12-hr period). The result suggests that 
it is more advantageous to determine the approximation parameters in such a way as 
to arrive at a close fit in the periods near sunrise and sunset vvherc the step size is 
smallest. 

From Table Ii it is seen that for each day, solution of the transformed system entaiis 
more Jacobian evaluations than does the base run. The Jacobian matrix, as part of the 
Newton iteration matrix, is updated if the product of step size and the leading coefi- 
cient of the multistep method is changed significantly: an update also occurs if the 
Jacobian varies so much that reevaluation is needed to achieve convergence of the 
iterative solution procedure. For the idealized problem at hand, the Jacobian matrix 
is constant in the original t-formulation, so that updates occur only as a result of step 
size and order changes. In the f’-formulation, however, the Jacobian varies in propor- 
tion to (f[r(r’)]. A possible explanation for the increased number of NJE’s is that the 
greater variation in the Jacobian more than offsets the reduced variation in step size in 
determining the number of updates required to solve the transformed equation. 

in the unsuccessful runs indicated in Table I, the specified accuracy could not be 
maintained. Both aborted runs terminated just before sunset with the integrator 
attempting to use the scheme of highest order (viz., fifth order). Full-term integrations 
were achieved by increasing the error tolerance from 0.1 x lo-” to O.! :y: lo--’ for 
S = 0.5 x 1O-S and to 0.1 x !O-2 for S -= 0.3 x IO-“. 

The occurrence of the aborted runs suggests the possibility that transformations 
may be found to provide successful integration in a new variable t’ for cases in which 
the initial run in t is aborted. As long as the initial run terminates at a value of : :. 
noontime all parameters required by the above transformation technique are available 
to determine a more uniformly varying independent variable. As in the above experi- 
ments, the parameters may be varied but here with the primary aim of achieving :: 
fu!l-term integration. 

The second test problem [IO] involves the Chapman mechanism for ozone kinetics: 
the governing equations are of the form 

S(t) -- klcl(t) c-3 - ,&c’(t) c”(t) - 2/k,(t) 2 -i k,,(t) r’(i), {iti) 

d’(f) =: k,c’(t) 2 - /+‘(t) cyt> - k.,(t) c”(t): 0 < t < 107 (19) 

with initial conditions 

cl(O) = 106, c’(O) zzz 10’2, i-m 
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k, --= 1.63 x IO-‘“, k, = 4.66 x lo-16, 

eXp(--y&in cot), 
ki = lo 

sin 02 > 0 
-= 

I 2 sin wt < 0 
i 3, 4 

and 

ya = 22.62, y4 = 7.601, c3 = 3.7 x 10’6, w -:= n/T. 

Here cl denotes the concentration of the oxygen atom (0) c2 the concentration of 
ozone (0,) and cs (assumed constant) the concentration of oxygen (0,). Once again 
the diurnal functions, used to represent photochemical reactions, are nearly square 
waves that increase rapidly at dawn, vary little during the daytime (sin wt > 0) with 
a flat maximum at noon, and drop sharply to zero at sunset. 

The linearization of (18) and (19) gives rise to two eigenvalues and hence two time 
constants, the smaller of which is about Q set; the system is considered stiff and hence 
was solved with the same stiff-system integrator that was used in the preceding 
example. For this example, however, the error in ci (i = 1, 2) at time t(n) was con- 
trolled relative to max(I ci 1, 10--20} using the latest computed values of cl, c2. The floor 
value of 1O-2” was included to allow meaningful error control during those time 
periods when the concentration of 0 drops to extremely small values. While this test 
problem is more physically realistic than the first with regard to the interaction among 
the various species, the first problem with its extremely small time constant is perhaps 
more (numerically) representative of many diurnal kinetic processes. 

Integration of (18) and (19) over five days reveals an unexpected pitfall; viz., due 
to the initial conditions used, the first cycle is atypical of the remaining days. (After 
the first day, the concentration of 0 is < 1 at sunup.) Accordingly, the second day 
was taken as the representative period from which to estimate the transformation 
parameters. The variation of t/T with time step for 2 < t/T < 3 is shown by the solid 
line in Fig. 3. The curve is similar to its counterpart in Fig. 1 except for the sudden 
rises near sunup and sunset. These jumps occur at times when c1 falls below the floor 
value of 10-20. The exceptional behavior near sunup complicates the parameter 
estimation procedure used in the preceding example since we do not wish to base our 
approximation upon an anomalous part of the curve. Accordingly, the parametric 
values were roughly estimated by considering that part of the curve for which 
15 < n < 558, where the function f(n) exhibits regular behavior. With suitable 
modification of the approximating function (4) to account for the shortened intervals 
in t and n, the parametric values 

(Y = 1.85, j!3 :.= 1.90, 6 :.-< 0.1 (21) 

were obtained using the EPISODE-generated step size of 0.38 x lo-“T set at n = 15 
with n, =: 256. Substitution of the derived values in (4) results in the approximating 
function shown by the dashed line in Fig. 3. 

Numerical integration of the transformed system over a two-day period reveals 
that exactly the same number of steps are required to carry the integration over the 
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FIG. 3. Same as legend of Fig. 1 but with 2 < t,‘T < 3 for the Chapman mechanism (18) and 
(I’)). 

interval 2 C< t/T G 3 as are required in the base run for the same interval. The varia- 
tion oft’ with n is similar in character to the variation oft with n. A brief search using 
nearby values of 6, however, shows that some efficiency can be gained. Table III 
contains the run statistics for the second daylight period obtained by integrating the 
transformed system over the interval corresponding to 2 .< t/T .< 3 using S-values 
in the range 0.1 to 0.7. The base-run data are included for comparison. The results 
indicate an optimum 6 of 0.5. Table IV contains the day-by-day run data for a five-day 
integration of both the transformed (6 : 0.5) and original system. The transformation 
provides an overall 9 % saving in steps with a corresponding 6 7; saving in processing 
time. The results suggest that the variable transformation technique should be more 
effective when applied to systems having numerical properties more akin to those of the 
first test problem. 

TABLE III 

Computer Processing Statistics for Comparing Direct Integration of (18) and (19) with Integration 
of Transformed System for 2 < I:T < 3 Using Several Values of 6 

’ 8 

\ -. 
Steps 
NFE 

NJF. 

0.1 

596 
1088 
101 

0.2 

552 
972 
112 

Base 
0.3 0.4 0.5 0.6 0.7 run 

- - -. 
591 558 506 507 548 5Y6 

1085 IO00 909 929 973 1070 
122 94 80 79 95 118 
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TABLE IV 

Day-by-Day Computer Processing Statistics for Comparing Direct Integration of (18) and (19) with 
Integration of Transformed System for 0 < f/T Q 10 Using Optimum S 

6 = 0.5 Base run 

Day NSTEPS NFE NJE NSTEPS NFE NJE 

1 893 1369 143 985 1556 
2 520 927 94 608 1084 
3 548 971 117 601 1073 
4 542 945 102 599 1077 
5 569 1017 140 584 1047 

Total 3072 5229 596 3377 5837 

- .- - 
176 
130 
116 
137 
112 
671 

CPS 1.945 2.073 

4. CONCLUSIONS 

Some diurnal chemical kinetics problems such as those arising in stratospheric 
chemistry defy solution by standard numerical techniques due to the presence of short 
time constants and step-function-like reaction rates. Highly accurate and reasonably 
efficient solution to such problems can be achieved only by recently developed auto- 
matic step-changing, order-changing algorithms. Even the most advanced of these 
methods can require considerable computer time and can totally fail in some cases. 
Because of the periodic nature of the problem, the variation in the step size selected 
by the algorithm is approximately periodic. We propose to take advantage of this 
feature by determining an appropriate transformation of the independent variable 
based upon the behavior of the step size through one representative integration cycle 
and then solving the transformed system on all succeeding integration cycles. The 
transformation is chosen in such a way as to eliminate much of the variation in step 
size that occurs in the course of the integration since the use of a nearly uniform step 
size can significantly reduce computer time. 

Only two test problems have been considered thus far but in each example a crude 
procedure for transforming the variable reduced computer time, in one case by about 
21 %. Such reductions could be of importance when integrating large systems of 
coupled kinetics equations over long periods of time or when running three-dimen- 
sional dynamic-kinetic models of the stratosphere. The technique described here 
would be of particular value for verification of free-radical photochemistry by 
comparing model results with observations. 

No doubt there are more effective transformations and better ways to determine 
the free parameters such as by least-squares approximations or by direct reference 
to the reaction rates that play such a large role in limiting the step size. l‘he latter 
approach would be especially useful for the many photochemistry problems in 
which the rate constants are not accurately known. In these cases, the modeler often 
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finds it necessary to perform a series of simulation runs in which the rate constants 
are varied over some range of values. 

The present method is not intended to replace simpler approximation procedures 
that may offer satisfactory accuracy for a particular problem. This method, however, 
can be used to more efficiently evaluate such approximation procedures (e.g., equi- 
librium assumptions) by solving the particular system under consideration with and 
without the simplifying assumptions included. In cases where such simplifications 
prove acceptable and diurnal variation remains essential, the present method can be 
applied to the reduced system in succeeding experiments. While the reduction of 
computer time is worthwhile, the transformation technique would gain great impor- 
tance if the method could be used to achieve successful integration when integration 
of the t!ntransformed system leads to failure. 

The purpose of this work is to point up the potential of the transformation tcch- 
niquc for the type of problems discussed; the full power of the inethod is yet to be 
determined. 
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